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a b s t r a c t

The advent of hybrid and plug-in hybrid electric vehicles has created a demand for more precise battery
pack management systems (BMS). Among methods used to design various components of a BMS, such
as state-of-charge (SoC) estimators, model based approaches offer a good balance between accuracy,
calibration effort and implementability. Because models used for these approaches are typically low
in order and complexity, the traditional approach is to identify linear (or slightly nonlinear) models
that are scheduled based on operating conditions. These models, formally known as linear parameter
varying (LPV) models, tend to be difficult to identify because they contain a large amount of coefficients
that require calibration. Consequently, the model identification process can be very laborious and time-
attery modeling
ystem identification
/HEV
tate space

intensive. This paper describes a comprehensive identification algorithm that uses linear-algebra-based
subspace methods to identify a parameter varying state variable model that can describe the input-to-
output dynamics of a battery under various operating conditions. Compared with previous methods, this
approach is much faster and provides the user with information on the order of the system without placing
an a priori structure on the system matrices. The entire process and various nuances are demonstrated
using data collected from a lithium ion battery, and the focus is on applications for energy storage in

automotive applications.

. Introduction

The recent push for better fuel economy has prompted many
utomakers to develop hybrid powertrains as a means of improv-
ng powertrain efficiency. The battery pack, a critical technology
or such advanced powertrains, facilitates the storage of allows
lectrical energy so that the overall vehicle efficiency is improved.
n order to function correctly, the battery pack must have a well
esigned battery management system (BMS). Among other things,
BMS must be able to estimate various conditions of the battery

n real time so that the energy management system (EMS) of the
ehicle can best decide on the optimal operating strategy [1]. In par-
icular, this includes estimating the state of charge (SoC), state of
ealth (SoH) and state of life (SoL) of the pack. A growing number of
esults have appeared in the literature on various methodologies for
esigning these estimators [2–9]. Within these results, the various
odel-based approaches (such as [6,9]) have shown good balance
etween accuracy, calibration effort, and implementability. For
hese methods to be applicable, however, a control-oriented model
f the battery cell must be available; that is, such a model typically
ossesses good accuracy and is composed of lower order ordinary
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differential equations (ODEs) or difference equations, preferably
linear. A side benefit of having a model of this type is that it can
be easily implemented in a vehicle simulator and can be used in
the design of vehicle architecture and operating strategies. In addi-
tion, it can be used to study cell interactions inside a pack [10] or
evaluate and design other BMS functions such as charge balancing
[11].

Generating a control-oriented model that can describe the
input-to-output dynamics of a battery is a challenging problem.
A primary reason for this is that battery dynamics vary signifi-
cantly with operating conditions, and are typically nonlinear in
nature. This comes from the fact that the macroscopic behavior
of the battery is actually the result of a series of complex elec-
trochemical processes, such as charge transfer and diffusion, that
are affected by operating conditions [12,13]. The most important
operating conditions are temperature, SoC, and current demand.
For example, temperature can affect the rate of electrochemical
reactions; SoC determines the available reaction components; and,
current demand (in particular, the direction) determines the types
of reactions. When these operating conditions are held approxi-
mately constant, by lumping the distributed spatial dynamics, the

overall input-output dynamics can be approximated by electrical
circuits composed of linear elements such as resistors and capaci-
tors as well as possibly with nonlinear elements such as Warburg
impedance. By further linearizing any remaining nonlinearities,
a linear system of ODEs can be used to describe the localized

dx.doi.org/10.1016/j.jpowsour.2010.10.072
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ynamics. A common approach to extend the validity of this local
odel is to generate a family of local models corresponding to

arious portions of the operating space. Then this family can be
nterpolated to form a parameter varying model that describes the
ynamics over a large portion of the operating space. In this sense,
he simplicity in the model structure comes at the cost of having
arameter-dependent model coefficients.

There are two traditional approaches to identifying a parameter
arying battery model composed of ODEs. The first approach starts
y obtaining localized operating data for the battery over a range

n the operating space of interest. Then linear ODEs that are often
erived from an equivalent circuit are identified using localized
ata. The model parameters are then interpolated with respect to
he operating condition to generate the parameter varying model
escribed previously. The drawback of this approach is that it is
ather difficult to obtain localized data, because for a dataset to be
ttributed to one type of operating condition, the battery must only
e charging or discharging during the entire dataset. Such a process

imits the length of the dataset, because a lengthy dataset results
n significant changes in the SoC.

The second approach is to obtain a scheduled model directly
rom a comprehensive dataset that spans across various operat-
ng conditions. Such datasets are much easier to engineer and are

ore practical to collect. As reported in previous work [14,15,19],
he identification can be done using an optimization based proce-
ure. In this process, several datasets are taken, where inside each
ataset the battery operates at a constant temperature. The tem-
eratures for the overall process are chosen so that all appropriate
emperatures of interest are represented, and the dataset appro-
riately populated. Each isothermal dataset contains asymmetrical
teps that allow the SoC of the battery to travel through the range
f interest for the SoC while exciting battery dynamics (both charg-
ng and discharging) throughout the entire SoC range. To model the
attery, a Randle equivalent circuit is used that contains an open
ircuit voltage, an internal resistance, and parallel RC circuits to
pproximate the dynamics. Then the model identification is done
n a layered fashion, beginning with identification of a constant
arameter model using each isothermal dataset, including the open
ircuit voltage as a function of the SoC and other circuit elements.
ollowing this, using the constant model as an initial guess, the
odel is re-identified with the assumption that the circuit elements

re functions of the SoC and current direction. When this is done
or every isothermal dataset, the circuit elements are then interpo-
ated with respect to temperature so that they become functions of
emperature, SoC and current direction. Compared with the afore-

entioned interpolation approach, this approach is much more
fficient in terms of human interaction and effort. Nevertheless,
t still suffers in terms of computational requirements. The step of
enerating isothermal parameter varying models consists of a rela-
ively large optimization problem where each model could contain
ens, if not hundreds of unknown coefficients. Even on a reasonable-
ized computer cluster, each identification can take several hours.
ecause it is often the case during development that the model
tructure is changed, or conditions of the identification are altered,
equiring repetitious applications of the optimization process, any
eduction in time required to generate these isothermal models
epresents a large improvement.

Aside from the open circuit voltage (OCV), the remainder of the
odel is in the form of a linear parameter varying (LPV) state vari-

ble system. For some time now, subspace identification methods
ave been used effectively for generating multi-input, multi-output

iscrete linear time invariant (LTI) state variable models using only
he input and output data [16]. In recent years, a version of the sub-
pace method that applies to certain forms of LPV systems has also
ppeared [17,18]. Subspace methods have several distinct advan-
ages over optimization based methods. First and foremost, they
Sources 196 (2011) 2913–2923

are much faster than optimization based routines. The model coef-
ficients are computed using linear algebra tools applied to input and
output data; relatively speaking, therefore, the process is instanta-
neous. Second, this class of methods can be used to identify a state
variable representation in a completely general form. In the context
of battery modeling, this means the user would not have to assume
a priori an equivalent circuit representation. Third, the concept of
a dataset initial condition is irrelevant. In optimization based rou-
tines that require the simulation of the model over the dataset,
unknown non-zero initial conditions can cause inaccurate identifi-
cations. Finally, the linear algebra analysis of the input and output
data also provides the user with the approximate order of the sys-
tem. Experiments may still be required to ascertain an appropriate
model order that works to trade off simplicity for accuracy, but
having a guideline that is based on the data can make this pro-
cess very intuitive. Given these advantages, when the subspace
method is applied to the battery modeling problem effectively,
the overall modeling process is improved significantly. However,
such an application requires an innovative restructuring of the bat-
tery identification problem, with additional innovation to existing
subspace identification methodologies for LPV systems.

In this paper, a comprehensive LPV battery model identifica-
tion methodology is described that uses a subspace method as the
primary identification tool. The subspace method used is an exten-
sion of the LTI subspace method given in [16] using techniques
and formulations from [17,18]. The resulting method rivals the
optimization method from previous work [14,15,19] in terms of
accuracy, but is faster and more user-friendly. The overall method
is illustrated using data from a lithium ion battery.

2. Battery model

The basic model structure has current as input and the termi-
nal voltage as output. A major component of the battery terminal
voltage is the OCV, which is a static function of the SoC. Because
the SoC is essentially a scaled integral of the current, the OCV must
have marginally stable dynamics. Subspace based methods are not
effective at identifying such equations because small numerical
inaccuracies can significantly influence the fit. Therefore the output
voltage is the difference between the measured terminal voltage
and the OCV, which is commonly known as the over-voltage of the
battery. This essentially implies that prior to applying any model
identification algorithm, the OCV as a function of the SoC and tem-
perature must be obtained. Nonetheless, since OCV is a variable that
is generally measured during battery characterization, computing
the over-voltage is generally not problematic.

The dynamics of a battery are most heavily influenced by three
operating conditions: current direction (id), temperature (T), and
state of charge (z). Ignoring effects of uncertainty or measurement
noise for simplicity, the most generic model that can be formed is

x[k + 1] = A(T, z, id)x[k] + B(T, z, id)u[k]
y[k] = C(T, z, id)x[k] + D(T, z, id)u[k],

where y is the over-voltage, u is input current, and the matrices A, B,
C, D are of appropriate dimension. A simplification that can be made
immediately is to assume that C is independent of the parameters.
This is because as long as the system is observable, a parameter
dependent similarity transformation with the parameter depen-
dent C matrix as a row can remove the parametric dependence on
C completely. Observability can be assumed because the model is

constructed with the purpose of representing the input to output
dynamics of a battery. Therefore the model becomes

x[k + 1] = A(T, z, id)x[k] + B(T, z, id)u[k]
y[k] = Cx[k] + D(T, z, id)u[k].
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his is essentially in the same format that appeared in [17], with
he minor exception that in [17] the matrix D is assumed to be
ndependent of the parameters; a modification to this idea allows

to be parameter dependent.
The algorithm proposed in [17] is not applicable, for two main

easons. First, in order to model the dependence of system matri-
es on the parameters, nonlinear functions must be used. Writing
hese functions into the form needed by [17] requires rewriting
he systems parameters, namely T, id, and z into a much larger
ector of parameters. As a result, the data matrices that must be
nalyzed for the subspace routine are too large for reasonable
omputations, even on a supercomputer. A matrix reduction algo-
ithm can be used to reduce the size of the problem at the cost of
educed identification accuracy; however, that algorithm is itself
ery time consuming, which in the end negates the speed advan-
age of the subspace identification method. Second, the algorithm
equires that the system be exponentially stable with small enough
ime constant so that the effect of any initial conditions disappears
ithin a number of steps (selected by the user). If this condition

s not met, there will most likely be errors in the identification.
f the user selects a very large number for the number of steps
o ensure that effects of initial conditions disappear, the matrix
imension problem is exacerbated. Previous modeling experience
as shown that even when the battery dynamics are exponen-
ially stable, the time constants tend to be very long compared to
he sampling period, thereby requiring a large number of steps.
herefore, this approach is not suitable for the battery model iden-
ification problem. In [18], a different method is used to analyze the

atrices generated by the algorithm so that a much smaller matrix
square and the size of the dataset) is analyzed. Nevertheless, the
nitial condition problem persists. Furthermore, depending on the
ataset size, matrices analyzed are still relatively large and because
his analysis is in itself an approximation to the previous analysis,
dditional inaccuracies are introduced into the identification. Given
hese concerns, the LPV subspace algorithm as it appears in [18] is
ot adopted for this problem.

The approach that we take is to break the problem down further
o that the subspace method for linear time invariant systems can
e applied. First, battery modeling datasets are typically collected

n isothermal conditions to ensure that the measured temperature
s reliable (because measuring the internal temperature of a battery
s not practical). Therefore the temperature dependence of the sys-
em matrices can be removed if isothermal models are identified.
generic isothermal model can be written as

x[k + 1] = A(z, id)x[k] + B(z, id)u[k]
y[k] = Cx[k] + D(z, id)u[k].

o solve the matrix size problem, the dependence of the A matrix
n z and id is removed. This results in a model form given as

x[k + 1] = Ax[k] + B(z, id)u[k]

y[k] = Cx[k] + D(z, id)u[k].
(1)

s will be seen in the next section, because the parameters only
odify the input in (1), an LTI subspace method can be used to per-

orm the identification. One question that might arise is whether
his process simplifies the dynamics too much to be useful. To
nswer this, first note that whether A depends on the parameters
r not, is independent of the D matrix structure. Secondly, when
he isothermal models are interpolated, the temperature depen-
ence for A is captured. Thirdly, an iterative subspace method can

e used to recover some of these parameter dependencies in cer-
ain cases. If need be, an optimization based procedure (such as
n [19]) can be used to iteratively optimize the model to add the
arametric dependence to A using (1) as a starting point. With a
ood starting point, the optimization procedure should be able to
Sources 196 (2011) 2913–2923 2915

quickly improve the fit. As the results give later demonstrate, it is
often that case that models without parametric dependence on the
A matrix provide performance as good as that for models with this
dependence. Therefore isothermal models of the form (1) are often
sufficient.

3. Subspace identification algorithm

In this section, a subspace identification algorithm that can be
used to identify (1) is discussed. To begin, write the model into the
following form:

x[k + 1] = Ax[k] + B

[
u[k]

p[k] ⊗ u[k]

]

y[k] = Cx[k] + D

[
u[k]

p[k] ⊗ u[k]

] (2)

where p ∈ � s is a parameter vector and ⊗ represents the Kronecker
product. As an illustrative reference, if A and B are matrices defined
as

A = {aij} ∈ �m×n, B = {bij} ∈ �l×k,

then A Kronecker product B is given by

A ⊗ B =

⎡
⎢⎢⎣

a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

am1B am2B · · · amnB

⎤
⎥⎥⎦ .

Note that in writing the system this way, it is assumed that the
parameters affect the parameter dependent coefficients in an affine
or linear way. To see this, partition B as

B =
[

B0 B1 · · · Bs

]
,

where Bi ∈ � n×m for i = 0, 1, . . ., s. Then

B

[
u[k]

p[k] ⊗ u[k]

]
=
[

B0 B1 · · · Bs

][ u[k]

p[k] ⊗ u[k]

]

=
(

B0 +
s∑

i=1

Bipi[k]

)
u[k].

The term B0 +
∑s

i=1Bipi[k] can be thought of as a parameter
dependent B matrix. Clearly the dependence on p is affine (or linear
if one augments p with 1). Consequently, (2) can represent any sys-
tem where the dependence of B and D on the parameters is affine
or linear. It is important to note that the parameters in the vector p
may not be the same as the fundamental parameters on which the
system depends. This aspect will be illustrated more clearly when
the identification algorithm is applied to the battery model.

Now let m[k] be defined as

�[k] =
[

u[k]
p[k] ⊗ u[k]

]
.

In this way, � can be thought of as the actual input to the system.
Then (2) can be written as

x[k + 1] = Ax[k] + B�[k]

y[k] = Cx[k] + D�[k].
(3)
Eq. (3) is an LTI system with � as the input. Therefore the theoretical
development from [16] can be applied directly to the identifica-
tion problem. In fact, even though the system written here has no
stochastic input representing uncertainty and noise, such quanti-
ties can be added easily without changing the solve-ability of the
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verall problem. The detailed identification algorithm and deriva-
ion can be found in [16] and is therefore not repeated here. The
verall identification process can be summarized as follows:

. Select the maximum order N of the system;

. Form the data matrices (also known as Hankel matrices) using
the input (�) and output measurements;

. Use linear algebra tools such as QR and SVD to analyze matrices
generated from the data matrices to select the order of the sys-
tem and to compute the state sequences and the system matrices
(A, B, C, D).

One important issue that must be addressed is identifiability. In
ther words, under what conditions can algorithms such as [16] be
pplied with good results? The standard conditions under which
he system is identifiable are:

. If noise processes are present, then the input should be uncor-
related with the process noise and measurement noise.

. The sequence �[k] is persistently exciting of order 2N, where N
is the maximum order of the system selected by the user.

. The input is not a function of the past states and output.

Among these conditions, the first is generically true for most
ystems. The third condition simply says that the data should be
ollected under open loop conditions, a process controlled by the
ser. Thus, the second condition is the only nontrivial condition.
efine

0|2N−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 �1 · · · �j−1
�1 �2 · · · �j
...

...
. . .

...
�N−1 �N · · · �N+j−2
�N �N+1 · · · �N+j−1

�N+1 �N+2 · · · �N+j
...

...
. . .

...
�2N−1 �2N · · · �2N+j−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

here j is a large integer that allows as much of the dataset to
e used as possible. U is called the Hankel matrix of � from 0 to
N − 1. The input sequence � is persistently exciting of order 2N if
he covariance matrix between U0|2N−1 and UT

0|2N−1 is full rank. This
traightforward condition is complicated by the fact that � contains
oth u and p. For example, if pr[k] = pq[k] for all k, then regardless
f what the sequence u[k] is, the covariance matrix will be rank
eficient. Therefore, to be able to apply the identification algorithm,
ne must ensure that the persistence of excitation condition is met.
ecause the input is designed in open loop, this condition can be
hecked prior to the experiment to ensure that the dataset will be
seful.

.1. Iterative application

A recent study in [20] describes a Picard type iterative procedure
hat can be used to find the dependence of the A and C matrices on
he parameter vectors. In particular, it is argued that for an LPV

iscrete state variable system with affine parameter dependence

n all state matrices, if the parameters are excited using a white
oise signal, then the parameter dependence of the A and C matrices
an be obtained by repeated applications of the subspace method
escribed in the previous section.
Sources 196 (2011) 2913–2923

Consider the LPV system with affine parametric dependence for
all system matrices, given by

x[k + 1] = A

[
x[k]

p[k] ⊗ x[k]

]
+ B

[
u[k]

p[k] ⊗ u[k]

]

y[k] = C

[
x[k]

p[k] ⊗ x[k]

]
+ D

[
u[k]

p[k] ⊗ u[k]

]
,

(4)

where x ∈ � n, u ∈ � m, y ∈ � l, p ∈ � s are the state, input, output and
parameters, respectively, and A, B, C, D are the system matrices of
appropriate dimensions. Partition the matrices A and C as

A =
[

A0 A1 · · · As

]
, (5)

C =
[

C0 C1 · · · Cs

]
. (6)

Rewrite (4) as

x[k + 1] = A0x[k] +
[

B A1 · · · As

]⎡⎣ u[k]
p[k] ⊗ u[k]
p[k] ⊗ x[k]

⎤
⎦

y[k] = C0x[k] +
[

D C1 · · · Cs

]⎡⎣ u[k]
p[k] ⊗ u[k]
p[k] ⊗ x[k]

⎤
⎦

. (7)

Writing the system in this manner shows that p[k] ⊗ x[k] can be
considered as an additional input into the system if an estimated
state sequence is available. Given this interpretation, the iterative
subspace algorithm can now be described.

In the first step of the iterative algorithm, assume p[k] ⊗ x[k] = 0.
Then (7) reduces to (2), so that the subspace method described pre-
viously can be used to find A0, C0, B, D, and the corresponding state
estimates. In the next step of the iteration, the following system is
identified

x[k + 1] = A0x[k] +
[

B A1 · · · As

][ u[k]
p[k] ⊗ u[k]
p[k] ⊗ x̂[k]

]

y[k] = C0x[k] +
[

D C1 · · · Cs

][ u[k]
p[k] ⊗ u[k]
p[k] ⊗ x̂[k]

] (8)

where the state estimates obtained using the previously identified
system matrices are now used as inputs to the system. From this,
the estimates for Ai and Ci for i = 1, . . ., s can be obtained. Then
this process can be continued until convergence is achieved for the
estimated system matrices.

The idea of this algorithm is that rather than considering the
influence of the parameters on the A and C matrices all in one step,
causing exponential growth in the data matrices, the parameter
dependence is refined iteratively. In each step, the entire problem
is manageable from a computational viewpoint. As the examples in
[20] show, convergence is achieved in only a few iterations. Since
each iteration can essentially be computed instantaneously, few
iterations will not significantly increase the overall computational
time. The drawback of this approach is that for general parame-
ter trajectories (i.e. not white noise), there is no proof that the
process converges. For most practical systems, it may be impos-
sible to enforce the requirement that parameter trajectories be
characterized as white noise due to physical constraints on the

equipment. While anecdotal evidence using simple non-physical
example systems suggest that this process could converge for gen-
eral parameter trajectories as well, this method should be used with
caution. Results from using this method are presented in Section
5.1.
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. Battery model identification algorithm

.1. Model parameterization

In view of the subspace identification algorithm outlined in
he previous section, the next innovation is to convert the battery

odel to a form which can be used for application. In other words,
(z, id)u[k] and D(z, id)u[k] must be expressed in a suitable matrix
orm. First, to express current direction, a binary representation can
e used. Without loss of generality, consider the term B(z, id)u[k],
nd write

(z, id) =
[

Bc(z) Bd(z)
]

.

n other words, separate the charge and discharge components of B,
o that each component depends only on the SoC. To accommodate
he increased size of B, create the augmented input vector ū as

¯ [k] =

⎛
⎜⎜⎝
[

u[k]
0

]
if charge[

0
u[k]

]
if discharge

ith this notation, B(z, id)u[k] can be replaced with the equivalent
erm [Bc(z), Bd(z)]ū[k].

Because Bc and Bd are functions of SoC, a suitable functional form
s needed. There are many choices for this functional form so that
he result can be expressed in the matrix form desired. Whatever
orm is chosen, it should be flexible enough to place no a priori con-
traint on the function. For this reason, linear spline functions are
sed here. Because the domain for z is an interval (namely 0–100%),
he linear spline function is well suited. To define a linear spline
unction, first define a partition for the range of SoC relevant to the
roblem (a subset of the interval from 0 to 100%). Call this partition
0 ≤ �1, �2, . . ., �s ≤ 100]. Define

�i
(z) =

(
z − �i if z > �i

0 else
i = 1, 2, . . . , s.

�i
are basis functions for linear spline functions defined using the

artition [�1, �2, . . ., �s]. Thus

c(z) = Bc0 +
s∑

i=1

Bci
L�i

(z).

onsequently,

c(z)u[k] =
[

Bc0 Bc1 · · · Bcs

]
⎡
⎢⎢⎣

u[k]⎡
⎢⎣

L�1 (z)
L�2 (z)

· · ·
L�s (z)

⎤
⎥⎦⊗ u[k]

⎤
⎥⎥⎦ .

imilarly,

d(z)u[k] =
[

Bd0
Bd1

· · · Bds

]
⎡
⎢⎢⎣

u[k]⎡
⎢⎣

L�1 (z)
L�2 (z)

· · ·
L�s (z)

⎤
⎥⎦⊗ u[k]

⎤
⎥⎥⎦

Define the parameter vector p ∈ � s to be
[k] =

⎡
⎢⎣

L�1 (z[k])
L�2 (z[k])

· · ·
L�s (z[k])

⎤
⎥⎦ .
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Then define B̄c and B̄d as

B̄c =
[

Bd0
Bd1

· · · Bds

]
B̄d =

[
Bd0

Bd1
· · · Bds

]
Consequently, the fully parameterized term B(z, id)u[k] can be

written as

B(z, id)u[k] =

⎛
⎜⎜⎜⎜⎜⎜⎝

[
B̄c B̄d

]⎡⎣
[

u[k]
p[k] ⊗ u[k]

]
0

⎤
⎦ if charge

[
B̄c B̄d

]⎡⎣ 0[
u[k]

p[k] ⊗ u[k]

]⎤⎦ if charge

(9)

This parameterization allows the dependence on SoC and current
direction to be represented jointly and still retain the desired matrix
form. Clearly the D(z, id)u[k] term can be expressed in the exact
same way. Using this representation, the identification algorithm
outlined in the previous section can be applied.

The cost of this representation is that the size of the vector u
has increased 2(s + 1) times (recall, s is the size of the parameter
vector). However, this increases the size of the entire problem only
in a linear fashion. Therefore even problems with large datasets can
still be handled quite easily on a standard desktop computer.

4.2. Standard model form

One important feature about subspace identification is that the
system matrices identified may be in any basis. This poses a prob-
lem since the ultimate goal is to have the isothermal models work
together to have a multi-temperature model. So in this section a
standard model form is offered for the special case when the eigen-
values of A are positive, real and distinct. As it turns out, these three
conditions are typically met for lower order model identifications
in battery modeling problems. Therefore the form described here
is not overly restrictive, and has practical value.

Suppose that the eigenvalues of A are real and distinct. Then
there exists some similarity transformation that diagonalizes A. In
other words,

A = VĀV−1

where Ā is diagonal and whose diagonal is precisely the eigenvalues
of A. Without loss of generality, assume that the diagonal values of
A are arranged from the smallest to largest. Then

V−1x[k + 1] = Ā(V−1x[k]) + V−1Bu[k]
y[k] = CV(V−1x[k]) + Du[k]

.

Let B̄ = V−1B and C̄ = CV . Then the following system has the same
input to output dynamics as the previous (although, note that x no
longer refers to the same states):

x[k + 1] = Āx[k] + B̄u[k]
y[k] = C̄x[k] + Du[k]

Now apply another transformation

W = diag(−C̄). Note here that because Ā is diagonal and the sys-
tem is observable, W is necessarily non-singular. Let Ã = WĀW−1,
B̃ = WB̄, and C̃ = C̄W−1. Then the above system is equivalent in
terms of input to output as:

x[k + 1] = Ãx[k] + B̃u[k]

y[k] = C̃x[k] + Du[k]
(10)
In this last form, the transformation W ensures that C̃ =
[−1, . . . , −1]. Consequently, y[k] is the negative sum of all the com-
ponents of x plus Du[k]. In this form, Du[k] can be thought of as the
voltage drop due to an internal resistance; each component of x can
be thought of as voltage increase/drop due to some dynamics. As
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Fig. 1. Circuit model that is equivalent to the model identified.

uch y[k] is simply a sum of several voltage components. Further-
ore, because each state of x is decoupled from the other states,

ach state has the effect of a first order lowpass filter on the cur-
ent. Since the eigenvalues of the matrix A are positive, this model is
quivalent to a discretized equivalent circuit model with an inter-
al resistance and parallel RC circuits (as shown in Fig. 1). Note
hat if the eigenvalue happens to be negative, then there would be
o continuous time equivalent because there would be oscillations

n the response. However, in all the modeling done on batteries
erformed by the authors, this has not been the case.

Given this interpretation of the model identified, a continu-
us equivalent circuit model can actually be constructed using the
ystem matrices identified, which would give the model physical
eaning. More importantly, applying this transformation allows

ll the models to share the same structure, thereby allowing for
nterpolation of the model coefficients based on temperature.

.3. Model identification algorithm

Now a detailed identification procedure for identifying a param-
ter dependent state space battery model can be stated.

. Measure the open circuit voltage. Because our subspace method
is not suitable for modeling the open circuit voltage, the OCV as
a function of the SoC must be available a priori. In general, this
should be done for every temperature at which modeling data is
collected because the OCV varies with both SoC and temperature,
although the effect of temperature is smaller than that of SoC.
Typically the OCV is measured by either discharging the battery
at a very small rate (C/20 for example) or discharging/charging
to a SoC and then resting for a long period of time to allow the
dynamics to settle. In this case, a best practice measurement
technique is to charge the battery to 100%, soak the battery at
various temperatures, record the OCV, then discharge the battery
by 10% SoC increments, re-soaking at these temperatures. This
is continued until the SoC reaches its lowest sustainable value
(such as 10%).

. Collect modeling data at a set of preselected temperatures. For
example, if we are interested in modeling the battery behavior
from −5 ◦C to 45 ◦C, then we can collect data at 5 ◦C increments.
Each isothermal dataset must meet the persistence of excitation
criterion discussed earlier. In particular, this necessarily means
that the entire span of SoC is traversed through both charge and
discharge. An approach that works well for fitting lower order
models is to have multiple charging and discharging steps inside

every 10% SoC zone and gradually move through the entire range
of SoC. Because the current profile is designed prior to the test,
the open loop condition is automatically satisfied.

. Apply the subspace identification algorithm on each isother-
mal dataset. This provides a family of linear parameter varying
3800 4000 4200 4400 4600 4800 5000 5200 5400
time [s]

Fig. 2. Step current profile.

models (parameters being SoC and current direction) that are
themselves parameterized by the temperature.

4. Transform each isothermal model into the standard form
described in the previous section. This assumes that the eigen-
values of each A matrix are positive, real and distinct. If this is not
the case, then a more complicated procedure must be used for
this conversion. Note again that we have not experienced such
cases to date.

5. Interpolate the standardized isothermal models with respect to
the temperature to arrive at an LPV model whose parameters are
temperature, SoC and current direction.

6. (Optional but recommended) Use an optimization based proce-
dure to optimize the interpolated model over all the temperature
datasets jointly. This step may not be necessary if all of the model
coefficients interpolated previously show acceptable smooth-
ness properties. In general however, because of uncertainty and
the low-order nature of the model, numerical peculiarities are
typically inherent in the models identified. Therefore a best prac-
tice is generally to perform such a global optimization. How to do
this is outside the scope of this paper; interested readers should
pursue [15] for details.

5. Modeling results

In this section, a complete modeling case study is presented for
an A123 lithium ion iron-phosphate battery with nominal voltage
of 3.2 V and nominal capacity of 2.3 AH. A total of seven datasets are
used, collected at −5 ◦C, 0 ◦C, 5 ◦C, 15 ◦C, 25 ◦C, 35 ◦C and 45 ◦C (note
that lower temperatures such as −15 ◦C are not used because in that
condition the battery can only be operated in a limited range of SoC
before experience under-voltage). For each temperature, a dataset
consists of a series of asymmetrical steps used to excite the battery
dynamics, designed to allow the battery to travel through as much
of the 10–90% SoC region as possible while at the same time exciting
dynamics of interest for a typical application. Figs. 2 and 4 show the
asymmetrical step profile as well as the SoC trajectory achieved
using this profile. Note here that the SoC is calculated via current
integration after the current data is post-processed to remove noise
and drifts. Figs. 3 and 5 show a pulse current profile and its SoC

trajectory used to simulate battery response to higher magnitudes,
but with shorter duration current pulses than those used in the
step profile. Because a higher current rate is used, this profile is
only executed for temperatures from 15 ◦C thru 45 ◦C. Furthermore,
the SoC range is limited, from 50% to 90%, to avoid under or over-
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Fig. 4. SoC trajectory of the step profile.
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Fig. 5. SoC trajectory of the pulse profile.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
Singular Values (log scale)

Order
Fig. 6. Singular values analysis used to determine the model order.

voltage conditions on the battery. Here the pulse dataset is used for
validation purposes.

To start, the OCV is measured at 25 ◦C. We make the assumption
that this OCV is valid for all the other temperatures; while not com-
pletely valid, this assumption has little effect on the model fitting
results because any errors manifest themselves as constant offset
errors in some SoC regions. Since constant offsets cannot be mod-
eled by a dynamic system with stable eigenvalues, they do not have
a significant influence on the results of the fitting.

To illustrate the result of the identification, we first consider the
25 ◦C model. To find the order of the model, the maximum order
of the model is selected to be 10, which is much larger than the
order of the desired model. Subsequently, the subspace algorithm
is used to generate the relevant data matrices whose nonzero sin-
gular values provide the order of the underlying system. As seen in
Fig. 6, the relevant order of the system could be chosen in the range
from 1st to 4th, because of the relative magnitudes of the first four
singular values. In fact, we selected a second order because the fit-
ting differences between 2nd, 3rd, and 4th order models were very
small.

Once the order is selected, the model is identified according to
methodology and algorithmic steps discussed above, and subse-
quently simulated in open loop using the dataset. The resulting
RMS modeling error is only 7 mV for the step profile, as seen in
Fig. 7, where a comparison is given between the model and the
measurement. Clearly the model captures the dynamics exhibited
in the data. As Fig. 8 shows, the performance over the pulse dataset
is also very good (12 mV of RMS error).

To show the effect of parameter variation, the internal resis-
tances for the 25 ◦C and 5 ◦C models are plotted in Figs. 9 and 10,
respectively. In both cases, there is a difference between the charge
and discharge internal resistances, confirming the need for para-
metric dependence on the current direction. For both temperatures,
the internal resistance varies with respect to the SoC. In particular,
as the SoC approaches high and low regions, the internal resistances
increase; this phenomenon is consistent with the physical intuition.
For 25 ◦C, the overall variation with regard to the SoC is small. But
for 5 ◦C, this variation is significant, although occurring smoothly
with respect to the SoC. This suggests that the model fit captures the

physical characteristics of the battery. Furthermore, this also sug-
gests that these quantities can be easily interpolated with respect
to temperature.
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For other temperatures, the same model identification proce-
dure is performed; Table 1 summarizes the fitting results. At higher
temperatures, the RMS errors are reasonable, exhibited for both
the step dataset used for modeling and the pulse dataset used for
validation (wherever available). The fact that the model performs
similarly for the validation dataset is a good indication of the valid-

ity of the identification. Because the battery dynamics become more
complicated as the temperature lowers, at lower temperatures the
fit degrades. But as seen in Fig. 11, the error is mostly an offset
error that is the result of the inaccuracies in the OCV in the lower

Table 1
RMS error for datasets collected at different temperatures; M1 = subspace,
M2 = optimization.

T Step RMS [V] Pulse RMS [V]

M1 M2 M1 M2

45 ◦C 0.0098 0.0800 0.0072 0.010
35 ◦C 0.0112 0.0820 0.0072 0.011
25 ◦C 0.0084 0.0101 0.0128 0.0150
15 ◦C 0.0117 0.0128 0.0140 0.0140

5 ◦C 0.0206 0.0194 N/A N/A
0 ◦C 0.0340 0.0319 N/A N/A

−5 ◦C 0.0518 0.0480 N/A N/A
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Fig. 11. Model fit at −5 ◦C.
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Fig. 12. Charging internal resistance for −5 ◦C to 45 ◦C.

oC regions; otherwise, dynamics are captured well. By using an
CV function that is specifically measured for −5 ◦C, the fit would

mprove significantly. Therefore, even at −5 ◦C, despite the higher
rror, the model predicts the battery behavior well and is therefore
seful. Perhaps more importantly, the numbers here are similar to
he RMS error that results when an optimization based routine is
sed to generate these models (see [15,19] for example). For illus-
ration and comparison, a set of RMS errors using an optimization
ased routine is shown in Table 1. The numbers obtained between
he two methods are comparable, further evidence that in this par-
icular application, the scheduling of the A matrix with respect to
he SoC and current direction is unnecessary.

To arrive at a multi-temperature model, the identified coeffi-
ients must be interpolated with respect to temperature, and all
he models identified at constant temperatures must be converted
o the standard form. Figs. 12 and 13 show the charge and discharge
nternal resistance as a function of the SoC and temperature after
nterpolation. Both plots show a very smooth inverse dependence
n temperature (i.e. when temperature is lowered, the internal
esistance is increased) which is consistent with the chemical prop-
rties of the battery. In addition, it is interesting to analyze the
ime constants (from the eigenvalues of the A matrix) as a func-

ion of the temperature. These time constants correspond to the
ynamics of polarization and diffusion effects in the battery. To

llustrate, Figs. 14 and 15 show the shorter and longer time con-
tants in seconds (that is, a pole-zero mapping technique is used to
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Fig. 14. Shorter time constant for −5 ◦C to 45 ◦C.

transform the eigenvalues to continuous time). In both cases, the
variation with respect to temperature is smooth, allowing for an
easy interpolation as functions of temperature.

5.1. Iterative identification results

In Section 3.1, a method of iteratively computing an LPV dis-
crete state space model that includes parameter scheduling on the
A and C matrices is outlined. Because there is no guarantee of con-
vergence, a feasibility test is conducted to test the viability of this
method.

In the first portion of the test, the 25 ◦C step profile data is used
to fit a model where B and D still depend on the current direction
and SoC, but A and C now depend only on the current direction. To
do this, first define an additional parameter variable pid

as

pid
[k] =

(
−1 charging

1 discharging
. (11)
A(pid
[k]) = A0 + pid

[k]A1,

C(pid
[k]) = C0 + pid

[k]C1.
(12)
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Fig. 15. Longer time constant for −5 ◦C to 45 ◦C.
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n other words A and C take on the values A0 ± A1 and C0 ± C1 based
n whether the battery is being charged or discharged. Using this
etup, the approximate states computed using the model identified
n the previous section are fed into the new identification process
s input signals. In this case, the iterative algorithm converges;
fter transforming the resulting model into the standard form, the
matrix is given by

=

⎛
⎜⎜⎝
[

0.9892 0

0 0.8710

]
charging[

0.9892 0

0 0.8958

]
discharging

. (13)

he differences in the A matrix between charging and discharg-
ng are very minor, suggesting that the dependence on current
irection could be neglected. Nevertheless, because the algorithm
erforms as desired, this step could be used in other battery mod-
ling applications where the effect of the current direction may be
arger.

Next, under the same conditions, the dependence of A and C on
oC is added. However, the model obtained in the second itera-
ion is unstable. In particular, the parameter varying A matrix has
igenvalues that are outside of the unit circle for some values of
he parameters (model simulation confirms this instability). Con-
equently, the inclusion of SoC as a scheduling variable cannot be
andled by the iterative algorithm in this case.

To complete the study, several isothermal datasets are used
t the same time to see if the temperature dependence could be
btained using the iterative method. Given the instability results
ound previously when SoC dependence is added, for the mul-
iple temperatures case, only current direction and temperature
ependence are imposed on the A matrix. In this example, the step
rofiles obtained at 0 ◦C, 5 ◦C, 15 ◦C and 25 ◦C are used to fit the
odel. A one-dimensional linear spline function is used to repre-

ent the dependence of the A and C matrices on temperature, while
two-dimensional linear spline function is used to represent the
ependence of the B and D matrices on SoC and temperature. Then
setup similar to (12) is used to add the current direction depen-
ence to A and C. For example, if the partition for the temperature

s given as [T1, T2, . . ., Ts] and the linear spline basis functions for
his partition are given as UTi

(·) for i = 1, 2, . . ., s, then A can be
epresented by

(T[k], id[k]) (14)

A0 + pid
[k]A1 + pc[k]

s−1∑
i=1

Aic UTi
(T[k]) + pd[k]

s−1∑
i=1

Aid
UTi

(T[k]),

(15)

here under charging conditions pc[k] = 1 and pd[k] = 0, and under
ischarging conditions pc[k] = 0 and pd[k] = 1. Without loss of gen-
rality, C can be represented in a similar manner.

The dependence of B and D on current direction can be described
sing the same setup described in Section 4.1. In this case, while the
odels obtained during the iterations do not have stability issues,

he process does not converge. In particular, the models gener-
ted after the first iteration oscillate between two forms, neither of
hich are better than the model obtained after the first iteration.
hile this does not mean that the methodology is not feasible, it

oes mean that perhaps a different formulation is needed to ensure
hat this does not happen.
This feasibility study shows that the iterative subspace method
ould be used to identify constant temperature models where
he A matrix depends on the current direction. If all constant
emperature models are identified in this way, then the interpo-
ation scheme described previously can be used to find a model
time [s]

Fig. 16. Model fit using the 05 ◦C data at 5 Hz.

where the A matrix is scheduled on temperature and current direc-
tion. Using this method for additional scheduling variables may
be possible, but the formulation should be carefully examined to
avoid the problems of instability, as well as for assuring model
accuracy.

5.2. Data sampling

A subtle issue that appeared in this study is the dependence
of the fit on the sampling time chosen for the dataset. Originally,
the datasets were collected at a 10 Hz sampling rate, but using
this dataset directly to compute a model produced poor results.
The main reason for this is that the battery dynamics have a much
slower time constant than the 10 Hz sampling rate. Consequently,
the eigenvalues of the A matrix identified under this sampling
rate are very near 1. As such, perturbations caused by noise and
unmodeled dynamics can significantly influence the accuracy of
the identification. For example, an eigenvalue of 0.99 gives rise to
a dynamic behavior that is quite different from an eigenvalue of
0.995, even though numerically the difference is small. This sug-
gests that a larger sampling time should be used. As a side benefit,
using a larger sampling period also reduces the number of data
points required.

To illustrate the effect of sampling time, two modeling exer-
cises are performed for the same dataset, sampled at two different
rates. The dataset used in this example is the asymmetrical step
profile taken at 5 ◦C. First the identification is performed using
the data at 5 Hz (10 Hz data was not used because of computer
memory limitations). As Fig. 16 indicates, the algorithm and iden-
tification process adequately identified the D term, whereas the
time constants are clearly not captured adequately. When the same
identification is performed with data sampled at 0.5 Hz, as seen
in Fig. 17, it is clear that the model performs much better. This
suggests that using 0.5 Hz sampling rate is a better practice than
using the 5 Hz rate. Note here that further down-sampling the
dataset is not recommended, because with this dataset the two
dominant time constants are approximately 15 s and 120 s. There-
fore if the dataset is downsampled further, the dynamics related
to the 15-s time constant would be filtered out, resulting in an

inaccurate model. Consequently, this analysis suggests that for this
application, a good sample rate is essential to the success of the
identification. A good rule of thumb is that a sampling rate around
1 Hz is sufficient.
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Fig. 17. Model fit using the 05 ◦C data at 0.5 Hz.

. Conclusion

In this paper, a complete methodology for identifying a control
riented model that can describe the input to output dynamics of a
attery is presented. This methodology differs from previous work

n the literature in that a subspace method is used as the identifi-
ation tool. Because the battery dynamics are inherently nonlinear
nd subspace methods only apply to linear systems, the first con-
ribution of this work is to frame the identification problem in such
way that the subspace method is applicable. In particular, it is

hown that if the open circuit voltage of the battery as a function of
he SoC and temperature is removed from the battery terminal volt-
ge, then the remaining voltage terms can be described adequately
y an LPV model whose input is the current and parameters are the
emperature and SoC. Then, a subspace methodology can be used

o quickly and effectively compute the LPV model coefficients.

Compared with other identification procedures that have
ppeared in the open literature, the method discussed in this paper
rovides several important improvements. First, because the sub-
pace method is an analytical tool, the time required to perform

[
[
[

[
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the identification is reduced drastically when compared with opti-
mization based techniques. Secondly, because the identification
process does not require simulation of the model, datasets that have
nonzero initial conditions can also be handled. Thirdly, the matrix
analysis used in the subspace method provides the user with an
estimate of the system order, which reduces the need for selecting
the order via trial and error. Lastly, a promising iterative subspace
method is available that could further improve the identification
accuracy, although preliminary results suggest that more work is
needed to render this technique more useful. Nevertheless, even
without using the iterative subspace method, the models identified
show good accuracy and are also physically sound. Consequently,
the process described in this paper provides a new paradigm for
solving the problem of control-oriented modeling of battery cells.
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